
NASA Contractor Report 189704

t_

FORMAL VERIFICATION OF AN ORAL MESSAGES

ALGORITHM FOR INTERACTIVE CONSISTENCY

John Rushby

Computer Science Laboratory

SRI INTERNATIONAL

Menlo Park, California

Contract NA81-18969

October 1992

N/ A
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(HASA-CR-189704) FORMAL
VERIFICATION OF AN ORAL MESSAGES

ALGORITHM FOR INTERACTIVE

CONSISTENCY (SRI Interndtional

Corp.) 51 p

N93-1_808

Uncles

83/62 0135333

i

Abstract

We describe the formal specification and verification of an algorithm

for Interactive Consistency [12] based on the Oral Messages algorithm for

Byzantine Agreement [9]. We compare our treatment with that of Bevier

and Young [2,3], who presented a formal specification and verification for

a very similar algorithm. Unlike Bevier and Young, who observed that

"the invariant maintained in the recursive subcases of the algorithm is

significantly more complicated than is suggested by the published proof"

and who found its formal verification "a fairly difficult exercise in me-

chanical theorem proving," our treatment is very close to the previously

published analysis of the algorithm, and our formal specification and

verification are straightforward.

This example illustrates how delicate choices in the formulation of

a problem can have significant impact on the readability of its formal

specification and on the tractability of its formal verification.

ii

Contents

3

4

5

Introduction 1

Informal Overview 4

2.1 Interactive Consistency 4

2.1.1 Oral Messages 4

2.1.2 The Original Algorithm 5

2.2 Byzantine Generals 6

2.2.1 The Correctness Argument 7

Bevier and Young's Verification

Specification and Verification in EHDM

9

13

Discussion and Conclusion 21

5.1 Discussion 21

5.2 Conclusion 23

Bibliography

A The

B The

C The

C.1

C.2

25

"Real" Specifications 28

Byzantine Generals Formulation of the Algorithm 31

Full Specification and Verification 33

The Specification 33

C.I.1 Module "Consensus" 33

Proof-Chain Analysis 42

,w.

111

PRECEDING P/_IGE BLANK NOT RLMED

List of Figures

3.1 Bevier and Young's Specification of the Oral Messages Algorithm . . 10

3.2 Bevier and Young's "Invariant" for BG2 I2

4.1 Our specification of the Oral Messages Algorithm 17

A.1 Bevier and Young's Specification--The Real Version 29

A.2 Our Specification--The Raw Text Version 30

B.1 Our Formulation of the Byzantine Generals Version of the Algorithm 32

iv

Chapter 1

Introduction

Fault tolerant s);stems, such as those used in digital flight control, require a way

to ensure that the replicated processors all work on the same input values. For

example, each processor may sample different sensors (or the same sensor at different

times) and thereby obtain different estimates of some external value; these different

estimates need to be combined into a single consensus value that is the same for

all processors. By starting with the same inputs, all correctly working processors

should then compute the same outputs and faults can be masked using exact-match

majority voting.

The problem of deciding on a Single Consensus value can be broken into two

stages. In the first stage, the processors exchange their private data values among

themselves. At the end of this stage, each processor has a vector giving the data

values of all the other processors; if there are no faults, these vectors will be identi-

cal on all processors. The second stage may then comprise any data conditioning,

selection, or averaging algorithms whatever: provided all processors run the same al-

gorithms, and start with the same vectors, they will end up with the same consensus
values.

We are interested in the first stage of this process, and with ensuring that it

performs reliably in the presence of arbitrary faults. (The worst kinds of fault

are "asymmetrical" ones where a faulty processor communicates different values

to different processors, potentially causing nonfaulty processors to disagree among
themselves.) This problem of reaching agreement in the presence of faults was first

posed, named, and solved by Pease, Shostak, and Lamport in 1980 [12]. They named
the problem that of achieving "Interactive Consistency." In 1982, the same authors

developed their analysis further, and reformulated it as the "Byzantine Generals

Problem" [9]; they named a revised version of the algorithm from their earlier paper

the "Oral Messages" algorithm. The principal difference between the Interactive

Consistency and Byzantine Generals problems is that the former is concerned with

the reliable exchange of values among all the participants, whereas the latter is con-

2 Chapter 1. Introduction

cerned with the reliable communication of a value from a distinguished participant

(called the "General") to all the others (who are called "lieutenants"). In practi-

cal applications, it is the Interactive Consistency formulation that is appropriate,

but the colorful metaphor of the Byzantine Generals has proved so memorable that

this formulation is better known; indeed, the whole field of algorithm design for

agreement in the presence of faults has become known as that of "Byzantine Agree-

ment," and the asymmetrical kind of fault mentioned earlier has become known as

a "Byzantine fault."

A problem related to Interactive Consistency is Byzantine fault-tolerant clock

synchronization [8]. In 1988, we formally verified the "Interactive Convergence"

algorithm for this problem [8, Algorithm CNV] and found that the published anal-

ysis of this algorithm was incorrect in a number of details [15, 16]. Our colleague

Shankar has formally verified the generalized clock synchronization paradigm of

Schneider [18] and similarly found a number of small errors [19,20]. In both cases,
the formal verification led to improved and simplified presentations of the infor-

mal justifications for the correctness of the algorithm concerned. We have often

wondered whether formal verification of the Oral Messages algorithm for Byzan-

tine Agreement would yield similar benefits, and have been curious to know how

difficult the formal verification of this algorithm would be, compared to the clock

synchronization algorithms.

In 1990, a formal verification of the Oral Messages Algorithm was published by

Bevier and Young [3] as part of the documentation of a more substantial exercise

in which they also verified the design of a circuit to perform the algorithm, and the

theorem that the fault-tolerance of the Oral Messages Algorithm is optimal among

its class of algorithms.

Bevier and Young described the algorithm as "quite difficult" and have indi-

cated elsewhere that development of its formal verification (using the Boyer-Moore

prover [4]) took them about a mont h. We found this surprising, since the published

journal proof for the correctness of the Oral Messages algorithm [9, page 390] is

short (less than a page) and straightforward. The time taken may be explained by

Bevier and Young's observation [3, page 1] that their machine-checked proof

"...elucidates several issues which are treated rather lightly in the pub-

lished version of the proof. In particular, the invariant maintained in

the recursive subcases of the algorithm is significantly more complicated

than is suggested by the published proof."

After careful study of Bevier and Young's presentation, however, we were unable to

persuade ourselves that their claim of suppressed complexity in the published journal

proof is justified. On the contrary, we continued to find the journal description and

proof more compelling than their formal presentation. In order to resolve our doubts,

we decided to undertake a separate formal verification using our EI-IDM system [17].

3

Thereare relativelyfewexamplesof interestingor difficult verificationsunder-
takenby morethan onegroup,or usingmorethan onesystemfor formal specifica-
tion andverification.Bill Young'scomparisonof Z and Gypsy[24]andthe 12-way
comparisonreportedby JeannetteWing [23]areconcernedsolelywith specification.
RathermoreinterestingareDavidBasinandMatt Kaufmann'scomparisonof two
verificationsof the finite Ramseytheorem[1], and Bill Young'sduplication [25]of
our verification[15,16]of a clocksynchronizationalgorithm [8].

Onereasonfor thepaucityofcomparisonsusingsubstantialor difficult examples
is that only a handfulof verificationsystemsarecapableof undertakingsuchexam-
ples,and the developersand usersof thosesystemsare fully engagedin their own
linesof enquiry.Whentheycanbeperformed,however,suchcomparisonsarevery
useful,sincethey providetheonly reasonableway to compareclaimsfor "readabil-
ity" or "expressiveness"in specificationlanguages,and "power" or "effectiveness"
in verificationenvironments.

Comparativestudiescan be undertakenat severaldifferent levels: two dif-
ferent systemscan be usedto proof-checkthe sameverification (cf. the clock-
synchronizationexamplementionedabove);two differentverificationscanbe per-
formedfor the samespecification;two differentformalizationscanbedevelopedfor
thesamespecification(cfl thestudyreportedby JeannetteWing);or twocompletely
separateformal developmentscanbe performedfor a singleproblem. Different
lessonsarelikely to belearnedfrom thesedifferentlevelsof comparison:whenone
toolornotationis simplysubstitutedfor another,wemaylearnsomethingaboutthe
ability of the secondto duplicatethe resultsof the first on its "homeground," but
wewill not learnhowthe problemmighthavebeenapproacheddifferentlyhadthe
secondtoolor notationbeenusedfrom thestart; andwhentwoindependentdevel-
opmentsareundertaken,wemaylearnmoreaboutthe problem-solvingapproaches
of the individualsconcernedthanaboutthe toolsemployed.

Theexperimentdescribedhereisof thelatter kind,andit maybe that the main
conclusionto be drawn concernsthe considerableimpact that apparentlysmall
changesin the formulationof a problemcanhaveon the tractability of its formal
verification.Onthe otherhand,this examplealsoinvitesspeculationon the benefi-
cial influencethat anexpressivespecificationlanguageandadirectapproachto proof
mayhavein the developmentof felicitousformulationsof interestingalgorithms.

Chapter 2

Informal Overview

In this section we briefly review the Interactive Consistency (IC) and Byzantine Gen-

erals (BG) problems, and the "Original" (OA) and Oral Messages (OM) algorithms

for solving them. We follow the presentations of Pease, Shostak, and Lamport [9,12]

very closely.

2.1 Interactive Consistency

Consider a set of n isolated processors, of which some may be faulty. It is not known

which processors are faulty, nor how many, nor what behavior may be exhibited by

faulty processors. Suppose also that each processor p has some private value vp

(such as its reading of some sensor). The problem is to devise an algorithm that will

allow each processor p to compute a vector Vp of values, in which, for each processor

r, Vp(r) is p's estimate of r's private value, satisfying the following conditions:

ICI: If processors p and q are nonfaulty, then they agree on the value ascribed to

any other processor r; that is: Vp(r) = V_(r).

IC2: If processors p and r are nonfaulty, then the value ascribed to r by p is indeed

r's private value; that is, Vp(r) = vT.

2.1.1 Oral Messages

There are many variations on the IC and BG problems that differ in the assumptions

made about interprocessor communications. For example, whether the processors

are fully connected, whether messages can be lost, and whether a faulty processor

can forge a message purporting to have come from another. The Oral Messages

assumptions are:

A l: Every message that is sent between nonfaulty processors is correctly delivered.

2.1. Interactive Consistency 5

A2: The receiver of a message knows who sent it.

Ag" The absence of a message can be detected.

An algorithm based on Oral Messages solves the IC problem under these as-

sumptions. The principal difficulty that must be overcome by such an algorithm is

that a faulty processor may send different values to different nonfaulty processors,

thereby complicating satisfaction of condition IC1. To overcome this, an algorithm

will use several "rounds" of message exchange during which processor p tells pro-

cessor q what value it received from processor r and so on. Of course, if processor

p is faulty, it may "lie" about the value it received from processor r. By making

sufficiently many rounds, an algorithm can defeat this threat.

2.1.2 The Original Algorithm

The original algorithm [12, page 230], which we will abbreviate as OA, is parame-

terized by n, the number of processors, and m (where n :> 3m + 1), the maximum

number of faulty processors. The following description of OA is taken verbatim

from [12, page 230] (except that we have changed V to v).

"Let P be the set of processors and v a set of values. For k _> 1, we

define a k-level scenario as a mapping from the set of nonempty strings

(possibly having repetitions) over P of length _< k + 1, to v. For a given

k-level scenario, a and string w = PxP2...Pr, 2 <_ r < k + 1, a(w) is

interpreted as the value P2 tells pl that P3 told P2 that p4 told P3.. •that pr

told pr-1 is p_'s private value. For a single-element string p, a(p) simply

designates p's private value vp. A k-level scenario thus summarizes the

outcome of a k-round exchange of information. (Note that if a faulty

processor lies about who gave it information, this is equivalent to lying

about a value it was given.) Note also that for a given subset of nonfaulty

processors, only certain mappings are possible scenarios; in particular,

since nonfaulty processors are always truthful in relaying information, a

scenario must satisfy

a(pqw) = a(qw)

for each nonfaulty processor q, arbitrary processor p, and string w.

"The messages a processor p receives in a scenario a are given by

the restriction ap of a to strings beginning with p. The procedure we

present now for arbitrary m > 0, n > 3m+ 1, is described in terms ofp's

computation for a given ap, of the element of the interactive-consistency

vector corresponding to each processor q (i.e., t_(q)). The computation
is as follows:

Chapter 2. Informal Overview

i

1. If for some subset Q of P of size > (n + m)/2 and some value t,,

ap(pwq) = v for each string w over Q of length < m, p records _,.

2. Otherwise the algorithm for m- 1, n- 1 is recursively applied with

P replaced by P- {q), and ap by the mapping &p defined by

&p(pw) = ap(pwq)

for each string w of length _< m over P-{q}. If at least [(n + m)/2]
of the n - 1 elements in the vector obtained in the recursive call

agree, p records the common value; otherwise p records NIL.

Note that &p corresponds to the m-level subscenario of a in which q

is excluded and in which each processor's private value is the value it

obtains directly from q in a."

We expect that many readers will share our opinion that this description of

OA is a challenge to comprehension. The argument for its correctness [12, page

231] is similarly hard to follow. The original authors also may have considered the

presentation somewhat difficult=, for a coupie Of years after the original publication

they reformulated the problem, the algorithm, and the argument for its correctness.

The revised presentation was couched in the metaphor of "Byzantine Generals" and
is described in the next section.

2.2 Byzantine Generals

As mentioned earher, BG differs from IC in that there is a distinguished processor

called the General whose value is to be communicated to all other processors (called

lieutenants)) Again, there are n processors in total, of which some (possibly includ-

ing the General) may be faulty. The General has some "order" v and the problem

is to devise an algorithm that will allow each Lieutenant p to compute an estimate

vv of the General's order satisfying the following conditions:

BGI: If Lieutenants p and q are nonfaulty, then they agree on the value ascribed

to the General; that is vp = Vq.

BG2: If the General is nonfaulty, then every nonfauity lieutenant has the correct

order; that]_ up = v. _

We have =renamed these c0ndi{ions BGi_and:BG2 to distinguish them from the

corresponding conditions of the IC case.

1Lamport, Shostak and Pease [9] often speak of the "Commanding General," and refer to the
others as the "lieutenant generals."

2.2. Byzantine Generals 7

The Oral Messages (OM) algorithm solves the BG problem under the same

assumptions as OA; it can be regarded as a substantial reformulation of OA, rather

than an independent algorithm. In order to distinguish the BG version of the

algorithm from the IC version to be introduced later, we denote them OMBG and

OMIC, respectively. The algorithm is characterized by the number of rounds to be

made: OMBG(m) is the instance of the algorithm that makes m + 1 rounds. The

following description is taken verbatim from [9, page 388]. Note that under the

Byzantine Generals metaphor, faulty processors are called "traitors," and nonfaulty

ones are "loyal." First we describe the simplest case, OMBG(0):

OMBG(0)

1. The General sends his value to every lieutenant.

2. Each lieutenant uses the value he receives from the General, or uses
the value retreat if he receives no value.

Now we can describe the general case.

OMBG(m), m > 0

1. The General sends his value to every lieutenant.

2. For each i, let v_ be the value Lieutenant i receives from the General,
or else be retreat if he receives no value. Lieutenant i acts as the

General in Algorithm OMBG(m - 1) to communicate the value v_
to each of the n - 2 other lieutenants.

3. For each i, and each j _ i, let vj be the value Lieutenant i received

from Lieutenant j in step (2) (using Algorithm OMBG(m- 1)), or
else retreat if he received no such value. Lieutenant i uses the value

majority(v1,..., Vn_l).

2.2.1 The Correctness Argument

The argument for the correctness of OMBG is taken verbatim from [9, page 390]

Lemma 1 For any m and k, Algorithm OMBG(m) satisfies BG2 if

there are more than 2k + m participants and at most k traitors.

Proof: The proof is by induction on m. BG2 only specifies what

must happen if the General is loyal. Using A1, it is easy to see that the

trivial algorithm OMBG(0) works if the General is loyal, so the lemma

is true for m = 0. We now assume it is true for m - 1, m > 0, and prove
it for m.

In step (1), the loyal General sends a value v to all n - 1 lieutenants.

In step (2), each loyal lieutenant applies OMBG(m - 1) with n - 1 gen-

erals. Since by hypothesis n > 2k + m, we have n - 1 > 2k + (m- 1),

8 Chapter 2. Informal Overview

so we can apply the induction hypothesis to conclude that every loyal

lieutenant gets vj = v for each loyal Lieutenant j. Since there are at

most k traitors, and n - 1 > 2k ÷ (m - 1) >_ 2k, a majority of the n - 1

lieutenants are loyal. Hence, each loyal lieutenant has vi = v for a ma-

jority of the n- 1 values i, so he obtains majority(v1,..., v_-l) = v in

step (3), proving BG2. []

Theorem 1 For any m, Algorithm OMBG(m) satisfies conditions BG1

and BG2 if there are more than 3m participants and at most m traitors.

Proof: The proof is by induction on m. If there are no traitors, then it is

easy to see that OMBG(0) satisfies BG1 and BG2. We therefore assume

that the theorem is true for OMBG(m - 1) and prove it for OMBG(m),
m>0.

We first consider the case in which the General is loyal. By taking

k equal to m in Lemma 1, we see that OMBG(m) satisfies BG2. BG1

follows from BG2 if the General is loyal, so we only need verify BG1 in

the case the General is a traitor.

There are at most m traitors, and the General is one of them, so at

most m- 1 of the lieutenants are traitors. Since there are more than 3m

generals, there are more than 3m - 1 lieutenants, and 3m- 1 > 3(m- 1).

We may therefore apply the induction hypothesis to conclude that

OMBG(m- 1) satisfies conditions BG1 and BG2. Hence, for each j, any

two loyal lieutenants get the same value for vj in step (3). (This follows

from BG2 if one Of the two lieutenants is Lieutenant j, and from BG1

otherwise). Hence, any two loyal lieutenants get the same vector of values

vl,..., v,_-l, and therefore obtain the same value majority(v1,..., v,,-1)

in step (3), proving BG1. D

Chapter 3

Bevier and Young's Verification

Bevier and Young [3] performed a formal specification and verification of the OMBG

Algorithm using the Boyer-Moore theorem prover [4]. Insofar as the restrictions of

the Boyer-Moore logic allow I, Bevier and Young's specification and verification fol-

lows the published version of Lamport, Shostak and Pease [9] very closely. Since

the problem of practical interest is IC rather than BG, they augment their descrip-

tion [3, Section 3.4] with the specification and verification with an additional step

that applies OMBG iteratively (with each process in turn taking the role of the

General), thereby extending it to a solution for IC.

Bevier and Young specify OMBG in terms of two mutually recursive functions,

vora* and voml*; the former is the main OMBG function, while the latter specifies

the iterative application over all lieutenants required in step (2) of the former. In

addition, the function yore0 specifies the base case OMBG(0). These functions are

reproduced in Figure 3.1 (taken from [3, Figure 5, page 7]). 2

Bevier and Young explain these functions as follows [3, pages 6,7]. Note that

the function (send v i j) denotes the value received when process i sends value v

to j.

"vom* is the top-level function which takes as arguments the number

m of rounds, the General's name g and value v, a list 1 of lieutenant

names, and the vector vec in which the message traffic is recorded.

It returns a vector in which each lieutenant's position is filled by that

lieutenant's view of the General's value. Arriving at this view requires

m - 1 rounds of communication (the call to the voml* function) com-

bined (pa±r'd) with the initial round in which the General distributes

1The Boyer-Moore logic is an untyped, unquantifled first-order logic resembling pure lisp.
2In order to satisfy the definitional principle of the Boyer-Moore system, the mutually recursive

pair yore* and voml* are encoded in the actual specification as a single function with a "flag"
argument to distinguish the two cases. This version is reproduced in Appendix A, Figure A.1.

10 Chapter 3. Bevier and Young's Verification

Definition

(vomO g v 1 vec)

(if (listp I)

(put (car I)

(send v g (car i))

(vomO g v (car I) vec))

vec)

Definition

(vom* m g V 1 vec) - "

(if (zerop m) - "

(vomO g v 1 voc)

(votelist .-

(pair (vomO g v 1 vec)

(voml* (subl m) i (vomO g v 1 vec) 1 vec)

i)))

Definition

(voml* m g-list vomO 1 vec)

(if (listp g-list)

(pair (vom* m (car g-list) (get (car g-list) vomO)

(delete (car g-list) i) vec)

(voml* m (cdr g-list) vomO 1 vec)

(delete (car g-list) I))

(init nil (length vec)))

Figure 3.1: Bevier and Young's Specification of the Oral Messages Algorithm

11

his value directly (the call to vor,0), and voting on each element in the

resulting map (the call to votelist).

"The function voml* takes as arguments the number m of exchanges,

a list g-list of names of processes which will serve in turn as the general

in this round, a vector yore0 in which each process's slot is filled with its

value sent to it by the General, a list 1 of the other lieutenants, and a

vector vec in which the message traffic is recorded. It returns a vector

in which each lieutenant's name is bound to the list of messages that

lieutenant has received in this round of message exchanges."

Bevier and Young state that the verification that their specifications of OMBG

satisfy BG1 and BG2 is '% fairly difficult exercise in mechanical theorem prov-

ing" [3, page 1] but that they "gained considerable insight into the algorithm" from

their formalization [3, page 13]. They illustrate the latter point by referring to the

published proof of OMBG (reproduced in Section 2.2.1 above) and observing:

"Though seemingly straightforward, there is a considerable degree of

suppressed detail in this proof. In particular, the induction hypothesis

refers to what happens after each round of message exchange without

worrying about the intermediate states which occur during each round.

In terms of our mutually recursive version of the algorithm, the proof

above describes the induction by referring to what happens after each

call to vom* and simply assumes what happens in the calls to voml*.

"What happens in these calls, and what is crucial from the point of

view of a fully formal proof, is that there is a rather involved invariant

maintained by the algorithm. A key part of this invariant can be stated

roughly as follows: after each round of message exchange all of the non-

faulty processors agree on a value for the General, that value being the

General's actual value. This notion we call non-faulty agreement.

"Formulating and proving an appropriate version of the invariant for

BG2 was the primary effort in the proof."

The invariant referred to above is reproduced in Figure 3.2. Bevier and Young "do

not bother to describe some of the subsidiary concepts such as non-faulty-value

which are involved in the statement of the invariant" [3, page 14] and do not ex-

hibit the corresponding invariant for BG1, but note that it "is substantially more
involved."

12 Chapter 3. Bevier and Young's Verification

Theorem. VOM-IC2-INVARIANT

(implies

(and (setp 1)

(bounded-number-listp 1 (length vec))

(member i i)

(not (faulty i)))

(if flg

(implies

(and (not (member g i))

(not (faulty g))

(leq (plus (times 2 (fault-count i)) m)

(length i)))

(equal (get i (vom flg m g v 1 vec))

v))

(implies I _:

(and (subbagp g I)

(equal (length v) (length vec))

(lessp (plus (times 2 (fault-count I)) m)

(length I))

(non-faulty-agreement (non-faulty-value g v)

g v))

(not (lessp (occurrences

(non-faulty-value g v)

(get i (vom flg m g v 1 vec)))

(if (member i g)

(sub1 (good-count g))

(good-count g)))))))

Figure 3.2: Bevier and Young's "Invariant" for BG2

Chapter 4

Specification and Verification
in EHDM

One source of complexity in both the specification and verification of Bevier and

Young's formulation of OMBG is the need for a pair of mutually recursive functions.

An additional burden is the need to perform a second specification and verification

in order to connect BG to IC. Both of these difficulties can be avoided by developing

a version of OM that solves IC directly. One way to see that this approach is likely

to be beneficial is to observe that the iterated recursion inside OMBG is solving an

instance of IC: after the General has transmitted his value to all the lieutenants, each

of those lieutenants has a private value (the value he received from the General), and

the subgoal is for the n- 1 lieutenants to perform IC on those private values. Each

lieutenant will then have an IC vector that gives the value sent by the General to

each lieutenant; all nonfaulty lieutenants will have the same IC vector, and selecting

the majority value from those vectors will cause each of them to assign the same
value to the General.

It follows that a generalization of OMBG from BG to IC should be simpler than

OMBG, since the recursive subproblems will be the same as the parent. We will

call this generalization the OMIC algorithm. We present the algorithm and the

argument for its correctness in the next few pages. All the specifications that follow

in this section are taken directly from our formal verification, and are in the language

of EHDM [17]; the proof sketches are also taken from our formal verification. The

full specification and verification is presented in Appendix C.

We will specify OMIC as a function of three arguments: m the number of rounds,

v a vector giving the private values of each processor, and caucus the set of processors

participating in the algorithm. Processors are represented by natural numbers in

the range 0...n - 1, and vectors are functions from processors to values (of some

uninterpreted type T). OMIC will return a "vector" of vectors: that is a function

from processors to vectors. Thus OMIC(m,v, caucus)(p) will be the IC vector of

13

14 Specification and Verification in EHDM

processor p following the OMIC algorithm, and OMIC(m, v, caucus)(p)(q) will be

p's opinion of q's private value (i.e., of v(q)). Notice that we are using higher-order

functions (i.e., functions whose values are functions) here. We have found higher-

order constructions very convenient in several specifications that we have undertaken

(see for example [13]). 1

In preparation for formally specifying OMIC, we first state its behavior for the
case m = 0. In this and the formulas that follow, free variables are treated as uni-

versally quantified at the outermost level, and we do not generally identify the types

of the variables appearing in these formulas (see the full specification in Appendix C

for these subsidiary declarations).

OMIC(O, v, caucus)(p)(q)

= if p E caucus A q E caucus then send(v(q), q,p) else undef end if

Here, under is some arbitrary value and send(v(q), q, p) is, as in Bevier and Young's

formulation a function that represents the value received by p when q sends it the

value v(q). Our requirement on OMIC in the case m = 0 simply states that if p
and q are both participants to the algorithm (i.e., both in the set caucus), then p's

opinion of q's private value v(q) following the algorithm should be send(v(q),q,p).

The property assumed of send is captured in the following axiom

[send_ax: Axiom ok(p) A ok(q) D send(t, q, p) = t [

where ok(p) is the predicate that asserts that processor p is nonfaulty. (We regard

a processor that is faulty at any point in the algorithm as being faulty throughout.)

Essentially, this axiom captures Assumption A1 of oral messages. Notice that if

either p or q are faulty, we know nothing whatever about the value send(t, q, p).

Well, not exactly nothing: we do know that its value is functionally determined by

t, p, and q. Thus' if q were to send t to p in a later round, the value received would

be the same as in this round, whatever the fault-status of the processors concerned.

This may not be realistic if p or q are faulty, so we will reformulate send to take the

round number as an argument: send(r, t, q,p)then represents the value received by

p when q sends it the value t in round r. The round number does not affect the

transmission when nonfaulty processors are involved:

[send_ax: Axiom ok(p) A ok(q) D send(r, t, q, p) = t I

1Higher-order functions are also used in EHDMto specify set operations, which appear frequently
in this specification. Sets are specified as their characteristic predicates in EHDMand the operation
that, for example, removes a processor from a set of processors has the specification

caucus - {q}: function[set, processors ---*set] = (A caucus, q : caucus with [(q) := false])

15

The only effectand purposeof this modifiedtreatmentof the send function is to

make it more clear that no assumptions at all are made about values communicated

when either the sender or receiver is faulty. 2

The specification of the behavior of OM1C in the case m = 0 needs to be adjusted

accommodate the changed functionality of send:

I OMIC(0, v, caucus)(p)(q) I= if p E caucus A q E caucus then send(O, v(q), q, p) else undef end if

For the case m = r, r > 0, we require that p's opinion of q's private value should

be send(r, v(q),q, q) if p = q,3 otherwise it should be the majority value in p's IC

vector, after performing OMIC with m = r - 1 on the current set of processors with

q excluded, and the values received from q as the private values. Thus we require

r > 0 D OMIC(r, v, caucus)(p)(q)

= if p E caucus A q E caucus

then if p = q

then send(r, v(q), q, q)

else maj(caucus - {q}, OMIC(r - 1, distr(r, v(q), q), caucus - {q})(p))
end if

else undef

end if

Here, distr(r, v(q),q) is simply a function that uses send in round r to distribute

the value v(q) from q to every other process: 4

[distr: function[rounds, T, processors ---,vector] = (A r, t, p: (A z: send(r, t, p, z))) I

2Even the modified formulation of send is not free of the suggestion that the value delivered by
a faulty processor is functionally determined. The only way to completely remove this taint is to
use a relational specification for send, with the interpretation that send(t1, q, p, t2) is true if p could
possibly receive t2 when q sends it tl, and the axiom:

] send_ax: Axiom ok(p) A ok(q) D send(t, q, p, t)

The problem with this reformulation is that it has ramifications throughout the specification, re-
quiring the definition of the Oral Messages algorithm itself, as well as several subsidiary functions,
to become relations also. Our colleague Shankar has recently developed such a specification and
verification of OMIC, but here we prefer to stay with the simpler, if slightly flawed, functional
definition of send.

3We could specify v(q) in this case; we have chosen the weaker assumption that a faulty processor
may not even know its own value.

tit might be less "wasteful" to add the set of recipient processors (i.e., caucus-{q}) as an addi-
tional argument to distr, rather than have the value sent to every process. This sort of "economy"
would be important in an implementation of the algorithm, but would clutter the specification and
proof.

16 Specification and Verification in EtlDM

The function maj takes a set caucus of processors, and a vector v, and computes the

majority value (if any) in that vector over that set. Actually, requiring this function

to be implemented by a majority vote overspecifies the problem. All that is really

required is specified in the following axiom, which states that if the good processors

form a majority in caucus, and if all the good processors have the same value in the

vector, then that is the value of the maj function. Notice that taking the median

of the values of the members of caucus (assuming they come from an ordered set)

would also satisfy this specification (as was correctly noted by Lamport, Shostak

and Pease [9, page 388]).

majax: Axiom

[caucus[> 2 * [faulty_members(caucus)[A (Vp: ok(p) Ap E caucus D v(p) = t)

D maj(caucus, v) = f

The function application faulty_members(caucus) that appears here is the set of

faulty (i.e., not ok) processors in the set caucus:

[faulty.members: function[set _ set] = (_ rnl: (A z: z E rnl A _ok(z)))
I

Vertical bars denote the cardinality function. The only properties we require of this

function are captured in the following axioms.

[* 1]: function[set ---*nat]

non_empty_ax: Axiom (3p :p E ml) _ [rnl[# 0

card_remove_ax: Axiom z E rnl D [rnl - {z}[= Iml[- 1

A second requirement on the maj function is that its value depends on only

those elements of the vector corresponding to members of the set caucus.

!

(Vp: p E caucus D vl(p) = v2(p)) D maj(caucus, vl) = maj(caucus, v2) [maj_ext: Axiom

We now return to the specification of OMIC. The two behaviors that were stated

above (for the cases m = 0, and m > 0, respectively) could be specified as axioms

defining the function; we prefer, however, to specify the function definitionalIy and

to deduce those properties as (straightforward) lemmas. The advantage of the defi-

nitional specification is that the EHDM typechecker will guarantee its soundness (in

the sense of not introducing inconsistencies). To do this, we are required to exhibit

a measure function that takes the same arguments as OMIC and whose value is a

natural number that can be proved to decrease across recursive calls. In the present

case, we use the measure function terminates that simply returns its first argument

(i.e., the number of rounds). The final specification for OMIC is given in Figure 4.1.

17

terminates:function[rounds,vector,set_ nat] = (Ar, v, caucus---* nat: r)

OMIC: Recurslve function[rounds, vector, set _ function[processors _ vector]] =
(A r, v, caucus :

if r=0

then (Ap :

(Aq:

if p E caucus A q E caucus

then send(v, v(q),q,p)
else undef

end if))

else (_ p :

(Aq:

if p E caucus A q E caucus

then if p = q

then send(r, v(q),q,q)

else maj(caucus - {q},

end if)

by terminates

OMIC(r - 1, distr(r, v(q), q), caucus - {q})(p))
end if

else undef

end if))

Figure 4.1: Our specification of the Oral Messages Algorithm

18 Specification and Verification in EHDM

We invite the reader to compare this specification with that of Bevier and Young

that was shown in Figure 3.1. Since our specification is pretty-printed (a function

performed automatically by EHDM), while Bevier and Young's is given in raw text

form, the versions shown in Appendix A, which reproduce the exact text submitted

to their respective theorem proving environments, allow more exact comparison.

The Interactive Consistency conditions IC1 and IC2 are easily stated as theorems

to be proven:

Cl_final: Theorem

ok(p) A ok(q) D OMIC(m, v, fullset)(p)(y) = OMIC(m, v, fullset)(q)(y)

C2_final: Theorem ok(p) A ok(q) D OMIC(m, v, fullset)(p)(q) = v(q)

where fullset is the set of all processors.

As in the informal proof of Section 2.2.1, we begin by proving a lemma similar

to IC2. The proof is by induction and in formal verifications it is usually convenient
to reformulate the theorem to be proved as a predicate on the induction variable.

Here, we call the predicate C2prop.

C/prop: function[rounds ---*bool] =

(A r : (V p, q, caucus, v :

ok(v) A ok(q)

A p E caucus A q E caucus

^ [caucus[> 2 • [faulty_members(caucus)[+ r

D OMIC(r, v, caucus)(p)(q) = v(q)))

The base case of the induction (i.e., C2prop(O)) follows by straightforward apph-

cation of definitions; the inductive step (i.e., r < m A C2prop(r) D C2prop(r + 1))

follows from two lemmas. The first, which asserts that a good processor has the

correct opinion of its own value, is straightforward:

[ok_self: Lemma ok(y) A y • caucus D OMIC(r, v2, caucus)(y)(y) = v_(y) l
!

The second, which asserts that under certain conditions a good processor forms the

correct opinion of the private value of another good processor, is more complex.

ok_others: Lemma

r < m A]caucus -- {q}l > 2 * [faulty_members(caucus - {q})]

A ok(y) A ok(q)

A y • caucus A q E caucus

Ay#q

^ (V z, vl : z _ caucus ^ ok(z) A z # q

D OMIC(r, Vl,Caucus - {q})(y)(z) = vl(z))

D OiIC(r + 1, v2, caucus)(y)(q) = v2(q)

19

Verification of this property depends on the majax axiom of the maj function.

The two lemmas above are sufficient to establish the inductive step for verifi-

cation of C2prop(r); observe that the hypothesis to the inductive step discharges

the quantified subexpression in ok_others. The theorem C2_final follows straightfor-

wardly from C2prop(r) by substitution of m for r and fullset for caucus, and using
the axiom

fullset_card_ax: Axiom Ifullsetl = n A Ifaulty-members(fullset)l _<m

and the constraint that less than a third of the processors may be faulty:

mn_prop: Formula 3 * m < n

This property is stated as a formula in the assuming section of the EHDM module

that specifies the theory developed here. It specifies an assumption on the param-

eters m and n to the module: inside the module, this assumption is treated as an

axiom; it must be discharged whenever the module is instantiated.

IC1 is similarly proved by induction, using the following predicate.

Clprop: function[rounds ---*bool] =

(_ r : (Vp, q, y, caucus, v :

ok(p) A ok(q)

A p E caucus A q E caucus A y E caucus

A [caucus[> 3 * r A r > [faulty_members(caucus)[

D OMIC(r, v, caucus)(p)(y) -- OMIC(r, v, caucus)(q)(y)))

Again the base case is straightforward; the inductive step has two cases, depending

on whether the processor y is faulty or not. The case that it is faulty is dealt with

in the following lemma, whose proof is a consequence of the maj_ezt axiom of the

maj function.

agree_nok: Lemma

r < m A [caucusl > 3 * (r + 1) A r 42 i> [faulty_members(caucus)l

A ok(p) A ok(q)

A p E caucus A q E caucus A y E caucus

^ ok(y)
^ (v z, vl : z caucus- {v}

D OMIC(r, Vl,Caucus - {y})(p)(z) = OMIC(r, vl,caucus - {y))(q)(z))

D OMIC(r + 1, v2, caucus)(p)(y) = OMIC(r + 1, v2, caucus)(q)(y)

2O Specification and Verification in EItDM

The case when y is nonfaulty is treated in the following lemma

agree_ok: Lemma

r < m A]caucus[> 3 * (r + 1) A r + 1 >]faulty_members(caucus)]

^ ok(p) ^ ok(q)

A p E caucus A q E caucus A y E caucus

A ok(y)

D OMIC(r + 1, v2, caucus)(p)(y) = OMIC(r + 1, v2, caucus)(q)(y)

whose proof is a consequence of C2_final.
These two lemmas are sufficient to establish the inductive step for Cl_final;

note that the hypothesis to this step discharges the quantified subexpression in

agree_nok. Cl_final follows from Clprop(r) in the same way that C2_final follows

from C2prop(r).

The full specification and verification requires development of some "background

knowledge." For example, the inductions require a specialized induction scheme that

goes from 0 only as far as m. This is stated as the Lemma round_induct th_.t is

ultimately derived from an axiom for Noetherian induction contained in a standard

EHDM library module. The variable round_prop is some arbitrary property of rounds
that is to be shown to hold for all rounds.

round_prop: Var function[rounds _ bool]

round_induct: Lemma

(round_prop(0) A (V r:r < m A round_prop(v) D round_prop(r + 1)))

D round_prop(s)

A full listing of the forma_ specification is provided in Appendix C, together

with EHDM's "proof chain" analysis for Cl_final. The latter identifies the axiomatic

foundation for our development: this comprises the 6 axioms and the assumption

shown here, plus an axiom for induction and another for function extensionality

that come from library modules. The subsidiary lemmas required to carry out the

formal verification number 23 (plus the two theorems), with another 4 in library

modules, and a further 20 typecheck correctness conditions (wccs--these are proof

obligations that must be discharged to ensure type-correctness) that are generated

by the typechecker. Only 2 of the TCCs require user-generated proofs; the other 18

are proved automatically.

Chapter 5

Discussion and Conclusion

5.1 Discussion

We have presented the formal specification and verification of an algorithm for In-

teractive Consistency derived from the Oral Messages algorithm for the Byzantine

Generals Problem. Bo_h the specification of the algorithm and the arguments for

its correctness are straightforward and closely modeled on those given by Lamport,

Shostak and Pease in their journal presentation [9]. Development of the formal spec-

ification and its verification in EHDM took about four days. By comparison, Bevier

and Young [3], using the Boyer-Moore theorem prover, found formal verification of

their version of the algorithm "a fairly difficult exercise in mechanical theorem prov-

ing" that occupied them for about a month. We do not know all the complexities

that confronted Bevier and Young, and so we cannot identify, much less apportion

credit to, all the reasons why we apparently found the verification easier than them.

However, one explanation for these different assessments of the difficulty of the

exercise may lie in the different formulations employed for the algorithm. Bevier and

Young used the Byzantine Generals formulation, which must be applied iteratively

in order to solve the Interactive Consistency problem that is the topic of real interest,

and whose recursive subcase likewise requires iteration. This potentially complicates

the inductions at the heart of the proof (since the recursive subcase is not simply

a smaller instance of the original problem), and the larger verification along with

it. The specification of the algorithm may become similarly complicated in this

formulation. In contrast, our reformulation of the Oral Messages algorithm solves

the Interactive Consistency problem directly, and its recursive subcase is a smaller

instance of itself. The formal specification, main inductions, and overall verification

are then entirely straightforward.

The lesson here is a variation on the well-known observation that it is sometimes

easier to prove a stronger than a weaker theorem when using induction. In partic-

ular, it is much easier to prove properties of an algorithm whose recursive subcases

21

22 Chapter 5. Discussion and Conclusion

are exact replicas of itself: and it may be worth modifying the algorithm, or its

requirement, or both, in order to make this so. A related observation, one that we

first heard explicitly articulated by our colleague Shankar, is that recursions should

always be formulated so that the base case is completely different from the recursive

case--since otherwise one may end up verifying substantially the same argument

twice.

But our simpler verification cannot be entirely attributed to our reformulation

of the Oral Messages algorithm into the IC form, for we have also verified the BG

version of the algorithm as considered by Bevier and Young. Our specification

of the BG form is not exactly the same as theirs, since our richer specification

language allows us to specify the algorithm without the need to simulate a pair of

mutually recursive functions (see Appendix B). Nonetheless, our BG formulation is

substantially the same as Bevier and Young's and yet its verification is only a little

more complex than that of OMIC. 1 However, we must admit that the formulation
and verification of the BG version would have been significantly more difficult had

we not already performed the IC version; that is specification and verification of IC

followed by BG is probably much simpler than tackling BG alone.

But allowing for the advantage we gained by choosing the more tractable ap-

proach, we still seem to have found this exercise more straightforward that Bevier

and Young, and we attribute some of this to the design decisions embodied in EHDM.

The specification language of EttDM is intended to provide a fairly direct and natural

means for expressing a variety of mathematical concepts, while retaining a straight-

forward logical foundation. We were gratified to find that the language helped us

to achieve clear descriptions of these tricky algorithms. We find the strong type

system and higher-order capabilities particularly helpful in this regard. Identify-

ing the types of the variables and functions involved is a valuable first step in the

formulating the specification, since it su_ests the ways in which functions should

be combined and thereby' in this Case, helps determine the shape of the recursion.

Higher-order logic allows many ideas to be expressed is a direct manner: thus, we do

not require the mutual recursion that complicates Bevier and Young's specification,

and we can represent values as functions, without the need to introduce lists.

We have had similar experiences with other specifications that we have under-

taken. For example, our formal development in EHDM of a model for fault-masking

and transient-recovery in digital flight-control systems [13, 14] was undertaken in

parallel with a similarly detailed development using conventional pencil-and-paper

mathematical notation [5,6]. The EItDM version took no longer to develop than the

other, is more general, is equally readable, and has been fully verified.

The simplifying reformulation of the Oral Messages Algorithm into its IC form

is very much the kind of benefit that we strive to obtain from formal methods (see,

1The verification, which is available from the author on request, was obtained by modifying the

OMIC version, and took about a man-day to produce.

5.2. Conclusion 23

for example, our improved argument for the correctness of the Interactive Conver-

gence clock synchronization algorithm [15,16]). We are strongly of the opinion that

formal methods must contribute to, and cannot stand apart from, established and

informal practices in software and hardware engineering. Thus, specifications must

be readable by others than their authors, and formal verifications must yield a chain

of argument that can be presented to, and will convince, a suitably knowledgeable
human reviewer.

5.2 Conclusion

As with other formal developments that we have performed, we derived a significant

benefit from this exercise quite apart from the mechanically-checked verification of

an interesting argument. Here, the benefit was a reformulation of the Oral Messages

Algorithm to solve the Interactive Consistency, rather than the Byzantine Generals

problem. This is not only a more useful form of the algorithm in practice, it is rather

simpler to specify and to verify. As always, this benefit could have been obtained

without formalization, but it was the discipline of formalization that led us to focus

on the problem in the manner required.

The simplification produced by our reformulation can be gauged by comparing

our formal specification and verification with that of Bevier and Young. Bevier and

Young state [3, page 1]

• "We believe that our formtilation provides a very clear and unam-

biguous characterization of the algorithm.

• "Our machine checked proof elucidates several issues which are

treated rather lightly in the published version of the proof. In par-

ticular, the invariant maintained in the recursive subcases of the

algorithm is significantly more complicated than is suggested by
the published proof.

"The latter two advantages arise as a consequence of providing a fully

formal proof, whether machine checked or not. However, the use of a

powerful mechanical theorem prover as a checker is a boon in managing
the complexity of the formal proof."

Regarding the first of these claims, we believe that our formulation is rather clearer

and simpler (and more useful) than Bevier and Young's, but that may be a matter

of taste. We believe we have demonstrated that their second claim is mistaken: our

machine-checked proof is essentially the same as the published version of the proof,

and we think it likely that the complexity discovered by Bevier and Young was an

artifact of their formalization and of the theorem prover at their disposal. Rather

than agreeing that "a powerful mechanical theorem prover.., is a boon in managing

24 Chapter5. Discussion and Conclusion

the complexity of the formal proof," we believe that a mechanical theorem prover

should help the user develop reasonably clear and straightforward proofs.

In summary, we believe this small example provides some substantiation for our

belief that the benefits of formal specification and verification are best assisted by

rather rich specification languages that permit natural forms of expression, and by

approaches to theorem proving that permit fairly direct control by the user.

Finally, recall that in the Introduction, we stated that our other motivations

for undertaking this work were to see whether we derived benefits similar to those

obtained in earlier formal verifications that we had undertaken (e.g, discovery of

flaws in previous proofs), and to compare the difficulty of verifying of an algorithm

for interactive consistency with that of one for clock synchronization.

Unlike our experience with clock synchronization algorithms, the benefits we

derived from formal verification of OMIC did not include discovery of flaws in the

previously published proof of correctness of the algorithm. However, building on

the experience gained in the exercise described here, we have discovered an error

in the algorithm (not just the proof) of Thambidurai and Park [21] for Interactive

Consistency under a hybrid fault model; working with Patrick Lincoln, we have also

developed and formally verified a correct algorithm for this problem.

Regarding difficulty, we can report that we found verification of OMIC to be an

order of magnitude simpler than that of Interactive Convergence [15, t6]: four days

work compared to about 40, and 23 subsidiary lemmas compared with nearly 200.

Given its relatively small size, but rather interesting character, we invite others to

try formal specification and verification of the Oral Messages Algorithm using their

favorite verification system. We have used the Byzantine Generals formulation of

this algorithm as one of the test cases in the development of our new Prototype

Verification System, PVS [11]. Using PVS, we are now able to construct the main

proofs for correctness of OMBG in under an hour. For those more interested in

fault-tolerant algorithms than the performance-testing 0f verification systems, an

interesting challenge is to develop and formally verify some of the many variants

that have been proposed for the Oral Messages Algorithm. We, for example, have

investigated the algorithm of Thambidurai and Park as already mentioned, and have

also formally verified a generalization of the algorithm used to provide Interactive

Consistency in the Draper FTP architecture [7].

Bibliography

[1] D. Basin and M. Kaufmann. The Boyer-Moore prover and Nuprl: An experi-

mental comparison. In G. Huet and G. Plotkin, editors, Preliminary Proceedings

of the First Workshop on Logical Frameworks, pages 43-65, Antibes, France,

May 1990. Final proccedings to be published by Cambridge University Press.

[2] W. R. Bevier and W. D. Young. The design and proof of correctness of a

fault-tolerant circuit. In Meyer and Schlichting [10], pages 243-260.

[3] William R. Bevier and William D. Young. Machine-checked proofs of the design

and implementation of a fault-tolerant circuit. NASA contractor report 182099,

NASA Langley Research Center, Hampton, VA, November 1990.

[4] R. S. Boyer and J S. Moore. A Computational Logic Handbook. Academic

Press, New York, NY, 1988.

[5] Ben L. Di Vito, Pdcky W. Butler, and James L. Caldwell. Formal design and

verification of a reliable computing platform for real-time control. NASA Tech-

nical Memorandum 102716, NASA Langley Research Center, Hampton, VA,
October 1990.

[6] Ben L. Di Vito, Ricky W. Butler, and James L. Caldwell. High level design

proof of a reliable computing platform. In Meyer and Schlichting [10], pages
279-306.

[7] Jaynarayan H. Lala. A Byzantine resilient fault tolerant computer for nuclear

power application. In Fault Tolerant Computing Symposium 16, pages 338-343,

Vienna, Austria, July 1986. IEEE Computer Society.

[8] L. Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of

faults. Journal of the ACM, 32(1):52-78, January 1985.

[9] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gen-

erals problem. A CM Transactions on Programming Languages and Systems,

4(3):382-401, July 1982.

25

26 Bibliography

[10] J. F. Meyer and R. D. Schlichting, editors. Dependable Computing for Critical

Applications--2, Tucson, AZ, February 1991. Springer-Verlag, Wien, Austria,

volume 6 of Dependable Computing and Fault-Tolerant Systems.

[11] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.

In Deepak Kapur, editor, 11th International Conference on Automated Deduc-

tion (CADE), pages 748-752, Saratoga, NY, 1992. Springer Verlag, volume 607

of Lecture Notes in Artificial Intelligence.

[12] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of

faults. Journal of the ACM, 27(2):228-234, April 1980.

[13] John Rushby. Formal specification and verification of a fault-masking and

transient-recovery model for digital flight-control systems. Technical Report

SRI-CSL-91-3, Computer Science Laboratory, SRI International, Menlo Park,

CA, January 1991. Also available as NASA Contractor Report 4384, July 1991.

[14] John Rushby. Formal specification and verification of a fault-masking and
transient-recovery model for digital flight-control systems. In Vytopil [22], pages

237-257.

[15] John Rushby and Friedrich von Henke. Formal verification of the Interactive

Convergence clock synchronization algorithm using EIIDM. Technical Report

SRI-CSL-89-3R, Computer Science Laboratory, SRI International, Menlo Park,

CA, February 1989 (Revised August 1991). Original version also available as

NASA Contractor Report 4239, June 1989.

[16] John Rushby and Friedrich von Henke. Formal verification of algorithms for
critical systems. In SIGSOFT '91: Software for Critical Systems, pages 1-

15, New Orleans, LA, December 1991. Expanded version to appear in IEEE

Transactions on Software Engineering, January 1993.

[17] John Rushby, Friedrich yon Henke, and Sam Owre. An introduction to formal

specification and verification using EtIDM. Technical Report SRI-CSL-91-2,

Computer Science Laboratory, SRI International, Menlo Park, CA, February
1991.

[18] Fred B. Schneider. Understanding protocols for Byzantine clock synchroniza-
tion. Technical Report 87-859, Department of Computer Science, Cornell Uni-

versity, Ithaca, NY, August 1987.

[19] Natarajan Shankar. Mechanical verification of a schematic Byzantine fault-
tolerant clock synchronization algorithm. Technical Report SRI-CSL-91-4,

Computer Science Laboratory, SRI International, Menlo Park, CA, January

1991. Also available as NASA Contractor Report 4386, July 1991.

Bibliography 27

[2o]

[21]

[22]

[23]

[24]

[25]

Natarajan Shankar. Mechanical verification of a generalized protocol for Byzan-

tine fault-tolerant clock synchronization. In Vytopil [22], pages 217-236.

Philip Thambidurai and You-Keun Park. Interactive consistency with multiple

failure modes. In 7th Symposium on Reliable Distributed Systems, pages 93-100,
Columbus, OH, October 1988. IEEE Computer Society.

J. Vytopil, editor. Formal Techniques in Real-Time and Fault-Tolerant Sys-

tems, Nijmegen, The Netherlands, January 1992. Springer Verlag, volume 571
of Lecture Notes in Computer Science.

Jeannette Wing. A study of 12 specifications of the library problem. IEEE

Software, 5(4):66-76, July 1988.

William D. Young. Comparing specification paradigms: Gypsy and Z. In Pro-

ceedings 12th National Computer Security Conference, pages 83-97, Baltimore,

MD, October 1989. NBS/NCSC.

William D. Young. Verifying the Interactive Convergence clock-synchronization

algorithm using the Boyer-Moore prover. NASA Contractor Report 189649,

NASA Langley Research Center, Hampton, VA, April 1992.

Appendix A

The "Real" Specifications

In this Appendix we reproduce the "real" specifications of the algorithms employed

by Bevier and Young and by ourselves. Bevier and Young's specification differs

from that of Figure 3.1 by combining the pair of mutually recursive functions into

a single function with a "flag" argument; our specification is the same as that given

on page 17, but is reproduced here in its raw text form.

28

29

Definition

(vom flg m g v 1 vec)

(if flg

(if (zerop m)

(vomO g v 1 vec)

(votelist

(pair (vomO g v 1 vec)

(vom f (subl m) 1 (vomO g v 1 vec) 1 vec)

i)))

(if (listp g-list)

(pair (vom t m (car g) (get (car g) vomO)

(delete (car g) i) vec)

(vom f m (cdr g) v 1 vec)

(delete (car g) i))

(init nil (length vec))))

Figure A.I: Bevier and Young's Specification--The Rea/Version

3O Appendix A. The "Real" Specifications

OMIC: RECURSIVE function[rounds, vector, set

-> function[processors -> vector]] =

(LAMBDA r, v, caucus :

IFr=O

THEN (LAMBDA p :

(LAMBDA q :

IF member(p, caucus) AND member(q, caucus)

THEN send(r, v(q), q, p) ELSE under END IF))

ELSE (LAMBDA p :

(LAMBDA q :

IF member(p, caucus) AND member(q, caucus)

THEN IF p = q

THEN send(r, v(q), q, q)

ELSE maj(remove(caucus, q),

0MIC(r - I, distr(r, v(q), q),

remove(caucus, q))(p))

END IF

ELSE undef

END IF))

END IF)

BY terminates

Figure A.2: Our Specification--The Raw Text Version

Appendix B

The Byzantine Generals

Formulation of the Algorithm

We specify the Byzantine Generals formulation of the Oral Messages algorithm as
a function OMBG of four arguments: G the identity of the General, m the number

of rounds, t the value the General wishes to communicate, and caucus, the set of

participants (which includes the General). OMBG will return a vector of values

in which OMBG(G, m, t, caucus)(p) is lieutenant p's opinion of the General's value.

The correctness conditions are the following.

BGl_finah Theorem ok(p) A ok(q)

D OMBG(G, rn, t, fullset)(p) = OMBG(G, m, t, fullset)(q)

SG2_final: Theorem ok(p) A ok(G) D OMBG(G, m, t, fullset)(p) = t

The specification of OMBG is rather interesting; it is due to our colleague Shankar.

In the case r = 0, lieutenant p's component of the vector returned is simply the value

received by p from the General; in the case r > 0, lieutenant p's component of the

vector is the value the General receives from himself when p = G, otherwise it is the

result of applying the maj function to the vector of values that p obtains when each

of the lieutenants in the caucus (less G but including p himself) acts as the General

in the OMBG algorithm with r - 1 rounds to distribute the value received by that

lieutenant from the original General. Notice how the higher-order capabilities of

the EttDM specification language allow us to specify the inner, iterative application

of OMBG by means of a A-abstraction, thereby avoiding the mutually recursive

functions of Bevier and Young's specification.

The formal verification of OMBG is very similar to that of OMIC, and was

derived from that of OMIC in less than a day. It is available from the author on

request.

31

32 Appendix B. The Byzantine Generals Formulation of the Algorithm

terminatesBG: function[processors, rounds, T, set _ nat] --

(A p, r, t, caucus ---*nat : r)

OMBG: Recursive function[processors, rounds, T, set --, vector] =

(A G, r, t, caucus :
if r=0

then (A p : if caucus(p) A caucus(G)

then send(r, t, G,p)
else undef

end if)

else (A p: if caucus(p) A caucus(G)

then if p = G

then send(r, t, G, G)

else maj(caucus- {G},

(A q : OMBG(q, r - 1, send(r, t, G, q), caucus - {G})(p)))
end if

else undef

end if)

end if) by terminatesBG

± : f:

= = =Y_5

Figure B.I: Our Formulation of the Byzantine Generals Version of the Algorithm
i i)

Appendix C

The Full Specification and
Verification

The specification text and verification output that follow were processed by EHDM

Version 5.2; some minor changes to the input syntax (e.g., deletion of the PROOF

keyword) will be necessary in order to use the current version of EHDM (numbered

6.1.1).

C.1 The Specification

We reproduce here the text of our specification and verification for the IC version

of the OM algorithm. The text comprises the module consensus. In the inter-

ests of brevity, we do not reproduce the system-generated module consensus_tcc

that contains the "typecheck-consistency conditions" (TCCs), nor the module top

that gives their proofs. Neither do we reproduce the library modules noetherian,

induction and functionprops. The module noetherian specifies the axiom of

Noetherian Induction (see, for example [15, page 99], [13, page 62] or [17, pages

57-61]), and the module induction (see, for example [13, page 63]) derives some

more specialized induction schemes from that general formulation. One of these

is used to prove the round_induct induction scheme over rounds that is employed

here. The functionprops module (see, for example [15, page 99]) simply _spe_ifies
an axiom of function extensionality.

C.1.1 Module "Consensus"

This module contains the specification and verification of the OMIC algorithm. Cer-

tain subsidiary concepts, such as sets and cardinality are defined here, too. Normally

these concepts are imported from library modules (see, for example [13, page 66]),

33

34 Appendix C. The Full Specification and Verification

but so few of their properties are needed here that we have preferred to specify them

in line.

consensus: Module [m, n: nat]

Exporting all

Assuming

ran_prop: Formula 3 * m < n

Theory

x: Var nat

processors: Type from nat with (A x : x < n)

rounds: Type from nat with (A z : x _< m)

T: Type

vector: Type is function[processors --* T]

r, s: Var rounds

v, vl, v2: Var vector

p, q, y, z: Var processors

undef: T

t: Var T

set: Type is function[processors --* bool]

fullset: set == (A z : true)

ok: function[processors ---*bool]

caucus, rrtl_ D22: Vat set

p E ml: function[processors, set --* bool] == (A p, ml : rnl (p))

faulty_members: function[set --* set] = (A rnl: (A z: z E ml A -_ok(z)))

• 1 - {.2}: function[set, processors --_ set] --=

(A caucus, q: caucus with [(q) :-- false])

[. 1[: function[set _ nat]

non_empty_ax: Axiom (3p:p E rnl) ¢:_]rnl] _ 0

fullset_card_ax: Axiom [fullset[= n A [faulty_members(fullset)[< m

C.1. The Specification
35

all_ok: Lemma 0 = [faulty-members(caucus)] A p E caucus D ok(p)

card_remove_ax: Axiom z E rnl D Ira1 -- {z}l = Imll- l

faulty_members_card_remove-ok: Lemma
z e ml ^ ok(z) _ Ifaulty-members(ml - {z))l = Ifaulty-members(ml)l

faulty_members_card_remove-nok: Lemma

z E ml A -,ok(z) D IfaultyAnembers(ml - {z})l = Ifaulty-members(ml)l- 1

maj: function[set, vector _ 71]

majax: Axiom Icaucusl> 2 • Ifaulty-members(caucus)I
^ (v p: ok(p)^ v e caucns_ v(v)= _)

D maj(caucus, v) = t

maj_ext: Axiom (Vp: p E caucus D vl(p) = v2(p))
D maj(caucus, vl) = maj(caucus, v__)

send: function[rounds, T, processors, processors ---* 71]

send_ax: Axiom ok(p) A ok(q) D send(r, t, q,p) = t

distr: function[rounds, T, processors ---, vector] ==

(_ r,t,p: (_ z: send(r,t,V,z)))

terminates: function[rounds, vector, set _ nat] == (I r, v, caucus --_ nat : r)

OMIC: Recursive function[rounds, vector, set --* function[processors --* vector]]

= (A r,v, caucus :
ifr =0

then (Ap:(Aq:
if p E caucus A q E caucus then send(r, v(q), q, p) else undef end if))

else (Ap : (A q :

if p E caucus A q E caucus

then if p = q

then send(r, v(q), q, q)

else maj(caucus - {q},
OMIC(r - 1, distr(r, v(q), q), caucus - {q})(p))

end if

else undef

end if))

end if) by terminates

Cl_final: Theorem ok(p) A ok(q)

D OMIC(rn, v, fullset)(p)(y) : OMIC(m, v, fuilset)(q)(y)

C2_finah Theorem ok(p) A ok(q) D OMIC(m, v, fullset)(p)(q) = v(q)

36 Appendix C. The Full Specification and Verification

Clprop: function]rounds _ bool] =

(A r : (V p, q,y, caucus, v :

ok(p) A ok(q) A p E caucus
A q E caucus

^ y _ caucus A Icaucusl > 3 * r A r >_ [faulty_members(caucus)[

D OMIC(r, v, caucus)(p)(y) = OMIC(r, v, caucus)(q)(y)))

C2prop: function]rounds ---*bool] =

(A r : (V p, q, caucus, v :

ok(p) A ok(q) A p e caucus
A q E caucus A]caucus[> 2 *]faulty.znembers(caucus)] + r

D OMIC(r, v, caucus)(p)(q) = v(q)))

CI: Lemma Clprop(r)

C2: Lemma C2prop(r)

Proof

Using induction, functionprops[processors, bool]

i: Var nat

round_prop: Var function]rounds --* bool]

round_induct: Lemma (round_prop(0)

A (V r:r < m ^ round_prop(r) _ round_prop@ + 1)))

D round_prop(s)

round_induct_proof: Prove
round_induct {r _ if i@pl in rounds then i@pl else 0 end if} from
limitedinduction

{m 0,
rn 1 _ /71_

p ,-- (_ i : if i in rounds then round_prop(i) else false end if),

n _--- 8}

distr_prop: Lemma ok(p) A ok(q) D distr(r, v(p), p)(q) = v(p)

distr_prop_proof: Prove distr_prop from

send_ax {t ,-- v(p), p *---q, q _-- p}

OMO_prop: Lemma OMIC(O, v, caucus)(p)(q)

-- if p E caucus A q E caucus then send(O, v(q), q, p) else undef end if

OM0_prop_proof: Prove OM0_prop from OMIC {r _ 0}

C.I. The Specification 37

OM_prop: Lemma r > 0 D OMIC(r, v, caucus)(p)(q)
= if p E caucus h q E caucus

then if p = q

then send(r, v(q), q, q)

else maj(caucus - {q}, OMIC(r - 1, distr(r, v(q), q), caucus - {q})(p))
end if

else undef

end if

OM_prop_proof: Prove OM_prop from OMIC

OMO_ok: Lemma ok(p) A ok(q) A p E caucus A q E caucus
D OMIC(0, v, caucus)(p)(q) = v(q)

OM0_ok_proof: Prove OM0_ok from OM0_prop, send_ax {r _ 0, t +-- v(q@c)}

ok_self: Lemma ok(y) A y E caucus D OMIC(r, v2, caucus)(y)(y) = v2(y)

ok_self_proof: Prove ok_self from

OM_prop {v _ v2, p ,--- y, q ,-- y},

OM0_prop {v +-- v2, p +- y, q _ y},

send_ax {p 4-- y, q _ y, t +- v2(y)}

remove_ok_member: Lemma

z E ml A ok(z) D (p E faulty_members(m1 - {z}) ¢* p E faulty_members(m1))

remove_ok_member_proof: Prove remove_ok_member from

faulty_members {z _ p}, faulty_members {m, _ rnl - {z}, z _- p}

remove_ok: Lemma z E ml A ok(z) D faulty_members(m1 - {z}) = faulty_members(m1)

remove_ok_proof: Prove remove_ok from

remove_ok_member {p +-- a@p2},

extensionality {F <---faulty_members(m1), G -- faulty_members(m_ - {z})}

remove_nok_rnember: Lemma

z E ml A -_ok(z) D (p E faulty_members(m1 - {z}) ¢* p E faulty_members(m1) - {z})

remove_nok_member_proof: Prove remove_nok_member from

faulty_members {z +- p}, faulty_members {rnt _ rnl - {z}, z *-- p}

remove_nok: Lemma z E ml A-,ok(z)

D faulty_members(m, - {z}) = faulty_members(m1) - {z}

remove_nok_proof: Prove remove_nok from

remove_nok_member {p _ a@p2},

extensionality {F _ faulty_members(ml) - {z}, G _ faulty_members(m1 - {z})}

faulty_members_card_remove_ok_proof: Prove faulty_members_card_remove_ok from
remove_ok

38 Appendix C. The Full Specification and Verification

faulty_members_card_remove_nok_proof: Prove faulty.znembers_card_remove.nok from
remove_nok, faulty_members, card_remove_ax {ml _ faulty_members(ml@c)}

ok_card_remove; Lemma

r < m A q E caucus A ok(q)

D [caucus] > 2 * [faulty_members(caucus)[+ r + 1
D [caucus - {q}] > 2 * [faulty.members(caucus - {q})] + r

ok_card_remove_proof: Prove ok_card_remove from

card_remove_ax {ml *-- caucus, z _-- q},

faulty_members_card_remove_ok {ml *-- caucus, z *- q}

ok_others: Lemma r < m

A]caucus - {q}] > 2 *]faulty.znembers(caucus - {q})]

A ok(y) A ok(q)

A y E caucus

A q E caucus
Ay¢q

A(Vz, vl :

z E caucus A ok(z) A z :fi q
D OMIC(r, vl, caucus - {q})(y)(z) = Vl(Z))

D OMIC(r + 1, v2, caucus)(y)(q) = v2(q)

next_round: function[rounds _ rounds] ==

(Ar---*rounds: ifr<m thenr+l else 0 end if)

ok_others_proof: Prove

ok_others {z *---p@pl, vl _-- distr(next_round(r), v2(q), q)} from

majax

{caucus _ caucus - {q},

v +-- OMIC(r, distr(next_round(r), v2(q), q), caucus - {q})(y),

t *-- v2(q)},

OM_prop {r _- next_round(r), v _-- v2, p _- y},

distr_prop {r _- next_round(r), v _-- v2, p _- q, q _- y},

distr_prop {r _-- next_round(r), v 4-- v2, p _- q, q _" q},

distr_prop {r _- next_round(r), v _-- v2, p _- q, q _-" p@pl}

C2prop_0: Lemma C2prop(0)

C2prop_0_proof: Prove C2prop_0 from

C2prop {r _ 0},

OM0_ok {p _ p@pl, q _ q@pl, v _ v@pl, caucus _ caucus@pl}

C2prop_r: Lemma v < rn A C2prop(r) D C2prop(r + 1)

remove_others: Lemma p E caucus A p _ q D p E caucus - {q}

remove_others_proof: Prove remove_others

C.1. The Spedt_cation 39

C2prop_r_proof: Prove C2prop_r from

C2prop

{v *-- vl@P3,

q _ z@p3,
p *---p@p2,

caucus _ caucus@p2 - {q@p2}},

C2prop {r _-- next_round(r)},
ok_others

{q .-- q@p2,

y _ p@p2,

v2 _'- v@p2,

caucus *--- caucus@p2},
ok_self

{r _- next_round(r),

y _ p@p2,

v2 _-- v@p2,

caucus _ caucus@p2},

ok_card_remove {caucus _ caucus@p2, q _ q@p2},

remove_others {caucus _ caucus@p2, q *--- q@p2, p _ p@p2},

remove_others {caucus ,--- caucus@p2, q _-- q@p2, p _ z@p3}

C2_proof: Prove C2 from

round_induct {round_prop ,--- C2prop, s _ r},

C2prop_0,

C2prop._r {r _-- r@pl}

agree_nok: Lemma r < m

^ Icaucusl > 3 * (r + 1)
A r + 1 _>]faulty_members(caucus)]

A ok(p) A ok(q)

A p E caucus

^ q E caucus

A y E caucus

^ -,ok(y)
A (Vz, vl :

z E caucus - {y}

OMit(r, vl, caucus- {v})(p)(z)
= OMIC(r, vl, caucus - {y})(q)(z))

D OMIC(r + 1, v2, caucus)(p)(y) = OMIC(r + 1, v2, caucus)(q)(y)

40 Appendix C. The Full Specit_cation and Verification

agree_nok_proof: Prove
agree_nok {z _ p@p3, vl _- distr(next_round(r), v2(y), y)} from

OM_prop (r _ next_round(r), v _ v2, q _ y},

OM_prop (r _-- next_round(r), v *- v2, q *-- y, p _'- q},

maj_ext
{caucus .- caucus- {y},

vl +- OMIC(r, distr(next_round(r), v2(y), y), caucus - {Y})(P),

v2 _ OMIC(r, distr(next_round(r), v2(y), Y), caucus - {y})(q)},

distr_prop {r *-- next_round(r), v ,-- v2, p +- y},
distr_prop {r _-- next_round(r), v *- v2, p _- Y, q *-- Y},

distr_prop {r _-- next_round(r), v +- v2, p _-- y, q +- p@pl }

agree_ok: Lemma r < m
^ Icaucusl> a • (r + 1)

A r + 1 > Ifaulty-members(caucus)[

A ok(p) A ok(q) A p E caucus A q E caucus A V • caucus A ok(v)

D OMIC(r + 1, v2, caucus)(p)(y) = OMIC(r + 1, v2, caucus)(q)(y)

agree_ok_proof: Prove agree_ok from

C2 {r +- next_round(r)),

C2prop {r _ next_round(r), q +---y, v _-- v2},

C2prop {r +-- next_round(r), p #-- q, q _ y, v *-- v2}

all_ok_proof: Prove all_ok from

non_empty_ax {ml *- faulty_members(caucus)},

faulty_members {ml *-- caucus, z *- p}

Clprop_0: Lemma Clprop(0)

Clprop_O_proof: Prove Clprop_O from

Clprop {r _ 0},

OMO_ok {p _- p@pl, q _ y@pl, v _ v@pl, caucus +-- caucus@pl},

OMO_ok {p *-- q@pl, q ,-- y@pl, v *---v@pl, caucus _-- caucus@pl},

all_ok {p *-- y@pl, caucus +- caucus@p1},
nat_invariant {nat_var _--]fautty_members(caucus@pl)[}

Clprop__r: Lemma r < m A Clprop(r) D Clprop(r + 1)

C.I. The Spedfication 41

Clprop_r_proof: Prove Clprop_r from
Clprop

{v _-- vl@p3,

y _ z@p3,
p _-- p@p2,

q _ q@p2,

caucus *---caucus@p2- {y@p2}},

Clprop {r _- next_round(r)},

agree_nok

{v2 _'- v@p2,

caucus +-- caucus@p2,

p _ p@p2,

q _ q@p2,

y +-- y@p2},

agree_ok

{v2 _ v@p2,

caucus +-- caucus@p2,

p *" p@p2,

q _ q@p2,

y _ y@p2},

remove_others {p *---p@p2, q _-- y@p2, caucus *---caucus@p2},

remove_others {p _-- q@p2, q +- y@p2, caucus _-- caucus@p2},

card_remove_ax {ml *---caucus@p2, z _-- y@p2},

faulty-members_card_remove..nok {rnl _ caucus@p2, z +- y@p2}

Cl_proof: Prove C1 from

round_induct {round_prop ,- Clprop, s _ r},
Clprop_O,

Clprop..r {r _-- r@pl}

Cl_final_proof: Prove Cl_final from

C1 {r _ m}, Clprop {r _ rn, caucus _ fullset}, fullset_card_ax, mn_prop

C2_final_proof: Prove C2_final from

C2 {r _ m}, C2prop { v *-- m, caucus +-- fullset}, funset_card_ax, ran_prop

End consensus

42 Appendix C. The Full Specification and Verification

C.2 Proof-Chain Analysis

The following pages reproduce the output from the EItDM proof-chain analyzer in

"terse mode" applied to the formula ¢l_2inal in module consensus. The analysis
for C2Ainal is similar. The EHDM proof-chain analyzer examines the macroscopic

structure of a verification--checking that all the premises used in a proof are either

axioms, definitions, or formulas which are, themselves, the target of a successful

proof elsewhere in the verification. If any formulas are used from a module having

an assuming clause, then the proof-chain analyzer checks that those assumptions

are discharged by successful proofs; similarly, if formulas are used from a module

having a TCC module, then the proof-chain analyzer checks that all the TCCs in

that module are discharged by successful proofs. The proof-chain analyzer ignores

unsuccessful proofs (such as automaticaily-generated TCC proofs) when a successful

proof for the same formula can be found. The "terse mode" output reproduced here

provides a commentary on only the "interesting" cases, namely proof obligations

involving assuming clauses and TCCs, and a summary. All the proofs listed in the

summary were performed by the EHDM theorem prover in "checking mode."

Terse proof chain for formula Cl_final in module consensus

Interesting cases from the analysis follow; see summary for status

Use of the formula

consensus[EXPR, EXPR].C1_final

requires the following TCCs to be proven

consensus_tcc[EXPR, EXPR].processors_TCC1

consensus_tcc [EXPR

consensus_%cc [EXPR

cons ensus_% cc [EXPR

consensus_¢cc [EXPR

consensus tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc [EXPR

consensus_tcc[EXPR,

consensus_tcc[EXPR,

consensus_tcc[EXPR,

consensus_tcc[EXPR,

EXPRJ.rounds_TCC1

EXPRJ.ON_TCCI

EXPR].ON_TCC2

EXPRJ.CI_finaI_TCCl

EXPRJ.round_induct_TCC1

EXPRJ.round_induct_TCC2

EXPRJ.round_induct_proof_TCC1

EXPR].round_induct_proof_TCC2

EXPR].OMO_prop_TCCI

EXPR].OM_prop_TCCI

EXPR].OMO_ok_TCCI

EXPRJ.ok_others_TCCl

EXPR].next_round_TCC1

EXPR].C2prop_r_TCCI

EXPR].agree_nok_TCCl

EXPR].agree_ok_TCCl

EXPR].Clprop_r_TCCI

EXPRj.Cl_fina1_proof_TCCl

Use of the formula

C.2. Proof-Chain Analysis 43

induction.limited_induction

requires the following TCCs to be proven

induction_tcc.ind_m_proof_TCCi

Use of the formula

noetherian[naturalnumber, induction.prev].general_induction

requires the following assumptions to be discharged

noetherian[naturalnumber, induction.prev].well_founded

SUMMARY

The proof chain is complete

The axioms

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

and assumptions at the base are:

EXPR].card_remove_ax

EXPR].fullset_card_ax

EXPR].maj_ext

EXPR].majax

EXPR].mn_prop

EXPR].non_empty_ax

EXPR].send_ax

functionprops[EXPR, EXPR].extensionality

noetherian[EXPR, EXPR].general_induction

Total: 9

The definitions and type-constraints are:

consensus[EXPR, EXPR].CIprop

consensus[EXPR, EXPR].C2prop

consensus[EXPR, EXPR].OM

consensus[EXPR, EXPR].faulty_members

naturalnumbers.nat_invariant

Total: B

The formulae used

consensus [EXPR

cons ensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

consensus [EXPR

are:

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

.Cl

.Ci_final

.Ciprop_O

.Ciprop_r

C2

C2prop_O

C2prop_r

OMO_ok

OMO_prop

OM_prop

agree_nok

agree_ok

44 Appendix C. The Full Specification and Verification

consensus

consensus

consensus

consensus

consensus

consensus

consensus

consensus

consensus

[EXPR

[EXPR

[EXPR

[EXPR

[EXPR

[EXPR

[EXPR

[EXPR

[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR,

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_¢cc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

consensus_tcc[EXPR

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

.all_ok

.distr_prop

.faulty_members_card_remove_nok

.faulty_members_card_remove_ok

.ok_card_remove

.ok_others

.ok_self

.remove_nok

.remove_nok_member

.remove_ok

.remove_ok_member

.remove_others

.round_induct

EXPR]

EXPR]

EXPR]

ZXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

Cl_final_TCCl

Cl_final_proof_TCC1

CIprop_r_TCCI

C2prop_r_TCCl

OMO_ok_TCC1

OMO_prop_TCC1

OM_TCC1

ON_TCC2

OM_prop_TCC1

agree_nok_TCCl

agree_ok_TCC1

next_round_TCC1

ok_others_TCCl

processors_TCC1

round_induct_TCCl

round_induct_TCC2

round_induct_proof_TCC1

round_induct_proof_TCC2

rounds_TCC1

induction.basic_induction

induction.induction_m

induction.limited_induction

induction_tcc.ind_m_proof_TCC1

noetherian[naturalnumber, induction.prev].well_founded

Total: 49

The completed proofs are:

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

consensus[EXPR

EXPR].Cl_final_proof

EXPR].Cl_proof

EXPR].Clprop_O_proof

EXPR].C1prop_r_proof

EXPR].C2_proof

EXPR].C2prop_0_proof

C.2. Proof-Chain Analysis 45

consensus [EXPR,

consensus [EXPR,

consensus [EXPR,

consensus [EXPR,

consensus [EXPR,

consensus [EXPR,

cons ensus [EXPR,

consensus [EXPR,

cons ensus [EXPR

consensus [EXPR

cons ensus [EXPR

consensus [EXPR

cons ensus [EXPR

consensus [EXPR

cons ensus [EXPR

consensus [EXPR,

consensus [EXPR,

consensus [EXPR,

consensus [EXPR,

cons ensus_t cc [EXPR,

cons ensus_t cc [EXPR,

consensus_tcc [EXPR,

consensus_tcc [EXPR

consensus_t cc [EXPR

consensus_tcc [EXPR

cons ensus_t c c [EXPR

consensus_tcc [EXPR

consensus_tcc [EXPR

consensus_tcc [EXPR,

consensus_tcc [EXPR

consensus_tcc [EXPR

consensus_tcc [EXPR

consensus_tcc [EXPR

consensus_tcc [EXPR

cons ensus_% c c [EXPR

consensus_tcc [EXPR

induct ion. dis charge

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

EXPR]

.C2prop_r_proof

ONO_ok_proof

OMO_prop_proof

OM_prop_proof

agree_nok_proof

agree_ok_proof

all_ok_proof

.distr_prop_proof

.faulty_members_card_remove_nok_proof

.faulty_members_card_remove_ok_proof

.ok_card_remove_proof

.ok_others_proof

.ok_self_proof

.remove_nok_member_proof

.remove_nok_proof

.remove_ok_member_proof

.remove_ok_proof

.remove_others_proof

.round_induct_proof

EXPR].CI_final_TCCI_PROOF

EXPR].CI_finaI_proof_TCCI_PROOF

EXPR] Clprop_r_TCCI_PROOF

EXPR] C2prop_r_TCCI_PROOF

EXPR] OMO_ok_TCCI_PROOF

EXPR] OMO_prop_TCCI_PROOF

EXPR] OM_TCCI_PROOF

EXPR] OM_TCC2_PRDOF

EXPR] ON_prop_TCCI_PROOF

EXPR].agree_nok_TCCi_PROOF

EXPR].agree_ok_TCCI_PROOF

EXPR].next_round_TCCi_PROOF

EXPR].ok_others_TCCi_PROOF

EXPR].round_induct_TCC1_PROOF

EXPR].round_induct_TCC2_PROOF

EXPR].round_induct_proof_TCCl_PRODF

EXPR].round_induct_proof_TCC2_PROOF

induction.ind_m_proof

induction.ind_proof

induction.limited_proof

induction_tcc.ind_m_proof_TCCl_PRODF

top[EXPR, EXPR].processors_TCCi_PROOF

top[EXPR, EXPR].rounds_TCCI_PROOF

Total: 49

Form _,pproved

REPORT DOCUMENTATION PAGE OM8.o. 070.-0788

_?Ii?_C, L_ _r_a_lC _, :_,:luOm_ sua_='sT_,kn_ *_.r te_u,_tn_ _h*; _r_pr :- _',aS'_r'_:Cn _O_r_,P '_, S£_,_C_$ DLrec*,ora_e _ 'Pf,._m3_lo _ _::_a_loP_. an_ i_._,-_$. 1_ !_. _ef_er$o_

:,a_s H=" t,a, SJ_ _ !204 ,_rhr'gtOr' J_, 22202.4302 a_C _, the _fL _ 9 _ M_ageme,_ _r_d 9uoget _aoer_c.r,. Reau_lOt_ PrOle:: (07C4-318_i ¢#a'_t_mgton _',(20503

1 AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED

October 1992 Contractor Report

4 TITLE AND SUBTITLE

Formal Verification of an Oral Messages Algorithm for Interactive Consistency

i6 AUTHOR(S)

John Rushby

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
333 Ravanswood Ave.
Menb Park. CA 94025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center
Hampton. VA 23681-0001

5. FUNDING NUMBERS

C NAS1-18969
WU 505-64-10-05

8 PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING _MONITORING

AGENCY REPORT NUMBER

NASA CR-189704

11. SUPPLEMENTARY NOTES

Langley Technica] Monitor: Ricky W. Butler

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 62

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We describe the formal specification and verification of an algorithm for Interactive Consistency based on the Oral Messages
algorithm for Byzantine Agreement. We compare our treatment with that of Bevier and Young, who presented a formal

i specification and verification for a very similar algorithm. Unlike Bevler and Young, who observed that "the invariant
maintained in the rscursive subcases of the algorithm is significantly more complicated than is suggested by the published
proof" and who found its formal verification "a fairly difficult exercise in mechanical theorem proving," our treatment is very
close to the previously published analysis of the algorithm, and our formal specification and verification are straightforward.

This example illustrates how delicate choices in the formulation of the problem can have significant impact on the readability

of its formal specification and on the tractability of its formal verification.

14. SUBJECT TERMS

Formal methods

Byzantine agreement
Proof-of-correctness

17. SECURITY CLASSIFICATION
OF REPORT

unclassified
NSN7540-01-280-5500

Verification
Fault tolerance

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

50

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pre_.criDe, cl by _NSI StCl Z39-18

298 _32 i

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for titling in each block of the form follow, it is important to stay within the lines to meet
optical scanning requirements.

Block 1. Aqency Use Only (Leave blank).

Block 2. Report Date. Full publication date

including day, month, and year, if available (e.g. 1

Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.

State whether report is interim, final, etc. If

applicable, enter inclusive report dates (e.g. 10

Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from

the part of the report that provides the most

meaningful and complete information. When a

report is prepared in more than one volume,

repeat the primary title, add volume number, and

include subtitle for the specific volume. On
classified documents enter the title classification

in parentheses.

Block 5. Fundinq Numbers. Toinclude contract

and grant numbers; may include program

element number(s), project number(s), task
number(s), and work unit number(s). Use the

following labels:

C - Contract PR - Project
G Grant TA Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s)

responsible for writing the report, performing
the research, or credited with the content of the

report. If editor or compiler, this should follow
the name(s),

Block7. Performing Orqanization Name(s) and

Address(es). Self-explanatory.

Block 8. Performina Orqanization Report

Number. Enter the unique alphanumeric report

number(s) assigned by the organization

performing the report.

BIockg. Sponsorinq/Monitorinq Aclencv Name(s)

and Address(es). Self-explanatory.

Block 10. Sponsorinq/MonitorinqAqency

Report Number. (If known)

Block 11. SuoDlementary Notes. Enter
information not included elsewhere such as:

Prepared in cooperation with...; Trans. of...; To be

published in When a report is revised, include

a statement whether the new report supersedes

or supplements the o!der report.

i I 1 gll|

Block 12a. Distribution/Av._ilability Statement.

Denotes public availability or limitations. Citeany

availability to the public. Enter additional

limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD -

DOE -

NASA -

NTIS

See DoDD 5230.24, "Distribution
Statements on Technical

Documents."

See authorities.

See Handbook NHB 2200.2.

Leave blank.

Block 12b.

DOD -

DOE

NASA-

NTIS

Distribution Code.

Leave blank.

Enter DOE distribution categories
from the Standard Distribution for

Unclassified Scientific and Technical

Reports.
Leave blank.

Leave blank.

Block 13. Abstract. Include a brief (Maximum

200 words) factual summary of the most

significant information contained in the report.

Block 14. Subject T#rms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total

number of pages.

Block 16. Price Cod_. Enter appropriate price

code (NTIS only).

Blocks 17. - lg. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in

accordance with U.S. Security Regulations (i.e.,

UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must

be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same

as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract

is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89}

